Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.609
Filtrar
1.
Int J Med Sci ; 21(5): 809-816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617011

RESUMO

This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control (MQC), including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.


Assuntos
Cardiotoxicidade , Doenças Mitocondriais , Humanos , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Mitocôndrias , Antraciclinas
2.
Echocardiography ; 41(4): e15805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558436

RESUMO

BACKGROUND: Left ventricular global longitudinal strain (LVGLS) has been recommended by current guidelines for diagnosing anthracycline-induced cardiotoxicity. However, little is known about the early changes in left atrial (LA) morphology and function in this population. Our study aimed to evaluate the potential usefulness of LA indices and their incremental value to LVGLS with three-dimensional echocardiography (3DE) in the early detection of subclinical cardiotoxicity in patients with lymphoma receiving anthracycline. METHODS: A total of 80 patients with diffuse large B-cell lymphoma who received six cycles of anthracycline-based treatment were enrolled. Echocardiography was performed at baseline (T0), after four cycles (T1), and after the completion of six cycles of chemotherapy (T2). Left ventricular ejection fraction (LVEF), LVGLS, LA volumes, LA emptying fraction (LAEF), LA active emptying fraction (LAAEF), and LA reservoir longitudinal strain (LASr) were quantified with 3DE. Left atrioventricular global longitudinal strain (LAVGLS) was calculated as the sum of peak LASr and the absolute value of peak LVGLS (LAVGLS = LASr+|LVGLS|). LV cardiotoxicity was defined as a new LVEF reduction by ≥10 percentage points to an LVEF of ≤50%. RESULTS: Fourteen (17.5%) patients developed LV cardiotoxicity at T2. LA volumes, LAEF, and LAAEF remained stable over time. Impairment of LASr (28.35 ± 5.03 vs. 25.04 ± 4.10, p < .001), LVGLS (-22.77 ± 2.45 vs. -20.44 ± 2.62, p < .001), and LAVGLS (51.12 ± 5.63 vs. 45.61 ± 5.22, p < .001) was observed by the end of the fourth cycle of chemotherapy (T1). Statistically significant declines in LVEF (61.30 ± 4.73 vs. 57.08 ± 5.83, p < .001) were only observed at T2. The relative decrease in LASr (ΔLASr), LVGLS (ΔLVGLS), and LAVGLS (ΔLAVGLS) from T0 to T1 were predictors of LV cardiotoxicity. A ΔLASr of >19.75% (sensitivity, 71.4%; specificity, 87.9%; area under the curve (AUC), .842; p < .001), a ΔLVGLS of >13.19% (sensitivity, 78.6%; specificity, 74.2%; AUC, .763; p < .001), and a ΔLAVGLS of >16.80% (sensitivity, 78.6%; specificity, 93.9%; AUC, .905; p < .001) predicted subsequent LV cardiotoxicity at T2, with the AUC of ΔLAVGLS significantly larger than that of ΔLVGLS (.905 vs. .763, p = .027). Compared to ΔLVGLS, ΔLAVGLS showed improved specificity (93.9% vs. 74.2%, p = .002) and maintained sensitivity in predicting LV cardiotoxicity. CONCLUSIONS: LASr could predict anthracycline-induced LV cardiotoxicity with excellent diagnostic performance. Incorporating LASr into LVGLS (LAVGLS) led to a significantly improved specificity and maintained sensitivity in predicting LV cardiotoxicity.


Assuntos
Cardiotoxicidade , Disfunção Ventricular Esquerda , Humanos , Cardiotoxicidade/diagnóstico por imagem , Cardiotoxicidade/etiologia , Função Ventricular Esquerda , Antraciclinas/efeitos adversos , Deformação Longitudinal Global , Volume Sistólico , Antibióticos Antineoplásicos/efeitos adversos , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/tratamento farmacológico
3.
PLoS One ; 19(4): e0300261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568919

RESUMO

Doxorubicin (DOX) is a broad-spectrum, highly effective antitumor agent; however, its cardiotoxicity has greatly limited its use. Hydrogen sulfide (H2S) is an endogenous gaseous transmitter that exerts cardioprotective effects via the regulation of oxidative stress and apoptosis and maintenance of mitochondrial function, among other mechanisms. AP39 is a novel mitochondria-targeted H2S donor that, at appropriate concentrations, attenuates intracellular oxidative stress damage, maintains mitochondrial function, and ameliorates cardiomyocyte injury. In this study, DOX-induced cardiotoxicity models were established using H9c2 cells and Sprague-Dawley rats to evaluate the protective effect of AP39 and its mechanisms of action. Both in vivo and in vitro experiments showed that DOX induces oxidative stress injury, apoptosis, and mitochondrial damage in cardiomyocytes and decreases the expression of p-AMPK/AMPK and UCP2. All DOX-induced changes were attenuated by AP39 treatment. Furthermore, the protective effect of AP39 was significantly attenuated by the inhibition of AMPK and UCP2. The results suggest that AP39 ameliorates DOX-induced cardiotoxicity by regulating the expression of AMPK/UCP2.


Assuntos
Sulfeto de Hidrogênio , Ratos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Linhagem Celular , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo , Apoptose
4.
Mol Biol Rep ; 51(1): 532, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637360

RESUMO

BACKGROUND: Doxorubicin is an effective antineoplastic agent but has limited clinical application because of its cumulative toxicities, including cardiotoxicity. Cardiotoxicity causes lipid peroxidation, genetic impairment, oxidative stress, inhibition of autophagy, and disruption of calcium homeostasis. Doxorubicin-induced cardiotoxicity is frequently tried to be mitigated by phytochemicals, which are derived from plants and possess antioxidant, anti-inflammatory, and anti-apoptotic properties. Arbutin, a natural antioxidant found in the leaves of the bearberry plant, has numerous pharmacological benefits, including antioxidant, anti-bacterial, anti-hyperglycemic, anti-inflammatory, and anti-tumor activity. METHODS AND RESULTS: The study involved male Wistar rats divided into three groups: a control group, a group treated with doxorubicin (20 mg/kg) to induce cardiac toxicity, a group treated with arbutin (100 mg/kg) daily for two weeks before doxorubicin administration. After treatment, plasma and heart tissue samples were collected for analysis. The samples were evaluated for oxidative stress parameters, including superoxide dismutase, malondialdehyde, and catalase, as well as for cardiac biomarkers, including CK, CK-MB, and LDH. The heart tissues were also analyzed using molecular (TNF-α, IL-1ß and Caspase 3), histopathological and immunohistochemical methods (8-OHDG, 4 Hydroxynonenal, and dityrosine). The results showed that arbutin treatment was protective against doxorubicin-induced oxidative damage by increasing SOD and CAT activity and decreasing MDA level. Arbutin treatment was similarly able to reverse the inflammatory response caused by doxorubicin by reducing TNF-α and IL-1ß levels and also reverse the apoptosis by decreasing caspase-3 levels. It was able to prevent doxorubicin-induced cardiac damage by reducing cardiac biomarkers CK, CK-MB and LDH levels. In addition to all these results, histopathological analyzes also show that arbutin may be beneficial against the damage caused by doxorubicin on heart tissue. CONCLUSION: The study suggests that arbutin has the potential to be used to mitigate doxorubicin-induced cardiotoxicity in cancer patients.


Assuntos
Antioxidantes , Cardiotoxicidade , Humanos , Ratos , Animais , Antioxidantes/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/etiologia , Arbutina/farmacologia , Arbutina/metabolismo , Arbutina/uso terapêutico , Miocárdio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Apoptose , Biomarcadores/metabolismo
5.
Mol Med Rep ; 29(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488036

RESUMO

Doxorubicin (Dox) exhibits a high efficacy in the treatment of numerous types of cancer. However, the beneficial cytotoxic effects of Dox are often accompanied by an increase in the risk of cardiotoxicity. Oxidative stress (OS) plays a key role in Dox­induced cardiomyopathy (DIC). OS in cardiomyocytes disrupts endoplasmic reticulum (ER) function, leading to the accumulation of misfolded/unfolded proteins known as ER stress. ER stress acts as an adaptive mechanism; however, prolonged ER stress together with OS may lead to the initiation of cardiomyocyte apoptosis. The present study aimed to explore the potential of an anti­diabetic drug, empagliflozin (EMPA), in mitigating Dox­induced ER stress and cardiomyocyte apoptosis. In the present study, the effects of 1 h pretreatment of EMPA on Dox­treated cardiomyocytes isolated from Sprague­Dawley rats were investigated. After 24 h, EMPA pre­treatment promoted cell survival in the EMPA + Dox group compared with the Dox group. Results of the present study also demonstrated that EMPA mitigated overall ER stress, as the increased expression of ER stress markers was reduced in the EMPA + Dox group. Additionally, OS, inflammation and expression of ER stress apoptotic proteins were also significantly reduced following EMPA pre­treatment in the EMPA + Dox group. Thus, EMPA may exert beneficial effects on Dox­induced ER stress and may exhibit potential changes that can be utilised to further evaluate the role of EMPA in mitigating DIC.


Assuntos
Compostos Benzidrílicos , Cardiomiopatias , Glucosídeos , Ratos , Animais , Ratos Sprague-Dawley , Cardiomiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Apoptose , Estresse Oxidativo , Estresse do Retículo Endoplasmático
6.
Am J Chin Med ; 52(2): 453-469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490806

RESUMO

Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug used to treat a wide spectrum of tumors. However, its clinical application is limited due to cardiotoxic side effects. Astragaloside IV (AS IV), one of the major compounds present in aqueous extracts of Astragalus membranaceus, possesses potent cardiovascular protective properties, but the underlying molecular mechanisms are unclear. Thus, the aim of this study was to investigate the effect of AS IV on DOX-induced cardiotoxicity (DIC). Our findings revealed that DOX induced pyroptosis through the caspase-1/gasdermin D (GSDMD) and caspase-3/gasdermin E (GSDME) pathways. AS IV treatment significantly improved the cardiac function and alleviated myocardial injury in DOX-exposed mice by regulating intestinal flora and inhibiting pyroptosis; markedly suppressed the levels of cleaved caspase-1, N-GSDMD, cleaved caspase-3, and N-GSDME; and reversed DOX-induced downregulation of silent information regulator 1 (SIRT1) and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in mice. The SIRT1 inhibitor EX527 significantly blocked the protective effects of AS IV. Collectively, our results suggest that AS IV protects against DIC by inhibiting pyroptosis through the SIRT1/NLRP3 pathway.


Assuntos
Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Saponinas , Triterpenos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Caspase 3/metabolismo , Sirtuína 1/metabolismo , Gasderminas , Doxorrubicina/efeitos adversos , Caspase 1/metabolismo
7.
Cell Stress Chaperones ; 29(2): 349-357, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485043

RESUMO

This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control, including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.


Assuntos
Cardiotoxicidade , Doenças Mitocondriais , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Doxorrubicina/efeitos adversos , Mitocôndrias , Antibióticos Antineoplásicos/efeitos adversos , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Miócitos Cardíacos
8.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473748

RESUMO

In recent years, immune checkpoint inhibitors have significantly changed the field of oncology, emerging as first-line treatment, either alone or in combination with other regimens, for numerous malignancies, improving overall survival and progression-free survival in these patients. However, immune checkpoint inhibitors might also cause severe or fatal immune-related adverse events, including adverse cardiovascular events. Initially, myocarditis was recognized as the main immune checkpoint inhibitor-related cardiac event, but our knowledge of other potential immune-related cardiovascular adverse events continues to broaden. Recently, preclinical and clinical data seem to support an association between immune checkpoint inhibitors and accelerated atherosclerosis as well as atherosclerotic cardiovascular events such as cardiac ischemic disease, stroke, and peripheral artery disease. In this review, by offering a comprehensive overview of the pivotal role of inflammation in atherosclerosis, we focus on the potential molecular pathways underlying the effects of immune checkpoint inhibitors on cardiovascular diseases. Moreover, we provide an overview of therapeutic strategies for cancer patients undergoing immunotherapy to prevent the development of cardiovascular diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Cardiopatias , Miocardite , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Doenças Cardiovasculares/etiologia , Cardiotoxicidade/etiologia , Neoplasias/tratamento farmacológico , Miocardite/etiologia , Cardiopatias/etiologia , Aterosclerose/etiologia , Imunoterapia/efeitos adversos
9.
J Colloid Interface Sci ; 663: 1064-1073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458046

RESUMO

Doxorubicin (DOX) is widely used in clinic as a broad-spectrum chemotherapy drug, which can enhance the efficacy of chemodynamic therapy (CDT) by interfering tumor-related metabolize to increase H2O2 content. However, DOX can induce serious cardiomyopathy (DIC) due to its oxidative stress in cardiomyocytes. Eliminating oxidative stress would create a significant opportunity for the clinical application of DOX combined with CDT. To address this issue, we introduced sodium ascorbate (AscNa), the main reason is that AscNa can be catalyzed to produce H2O2 by the abundant Fe3+ in the tumor site, thereby enhancing CDT. While the content of Fe3+ in heart tissue is relatively low, so the oxidation of AscNa had tumor specificity. Meanwhile, due to its inherent reducing properties, AscNa could also eliminate the oxidative stress generated by DOX, preventing cardiotoxicity. Due to the differences between myocardial tissue and tumor microenvironment, a novel nanomedicine was designed. MoS2 was employed as a carrier and CDT catalyst, loaded with DOX and AscNa, coating with homologous tumor cell membrane to construct an acid-responsive nanomedicine MoS2-DOX/AscNa@M (MDA@M). In tumor cells, AscNa enhances the synergistic therapy of DOX and MoS2. In cardiomyocytes, AscNa could effectively reduce the cardiomyopathy induced by DOX. Overall, this study enhanced the clinical potential of chemotherapy synergistic CDT.


Assuntos
Cardiomiopatias , Neoplasias , Humanos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Nanomedicina , Peróxido de Hidrogênio/metabolismo , Molibdênio/metabolismo , Doxorrubicina/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Neoplasias/metabolismo , Microambiente Tumoral
10.
J Cardiothorac Surg ; 19(1): 135, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500210

RESUMO

BACKGROUND: Celecoxib, a cyclooxygenase-2 selective inhibitor non-steroidal anti-inflammatory drugs, is used for the management of short- and long-term pain as well as in other inflammatory conditions. Unfortunately, its chronic use is highly associated with serious abnormal cardiovascular events. The current study was designed to explore the effect of long-term administration of celecoxib on the cardiac tissues of male albino rats. The study also examined the alleged cardioprotective effect of royal jelly. METHODS: Thirty, male albino rats were randomly divided into 3 equal groups; 10 each: (1) rats served as the control group and received no drug; (2) rats received celecoxib (50 mg/kg/day, orally), for 30 consecutive days; (3) rats received celecoxib (50 mg/kg/day, orally) plus royal jelly (300 mg/kg/day, orally) for 30 consecutive days. Sera were collected to assay cardiac enzymes and oxidant/antioxidant status. Rats were euthanatized and cardiac tissues were dissected for quantitative estimation of apoptotic genes (Bax) and anti-apoptotic gene (Bcl-2). RESULTS: Long-term celecoxib administration caused cardiotoxicity in male albino rats as manifested by significant elevation of serum levels of creatine phosphokinase (CPK), creatine kinase-MB (CK-MB), and lactate dehydrogenase (LDH), with ameliorative effects of royal jelly against celecoxib-induced cardiotoxicity as manifested by significantly decrease in serum CPK, CK-MB, and LDH levels. It also showed a significant decrease in the oxidative stress indicator malondialdehyde (MDA) levels and the bax gene. Additionally, it demonstrated significant increases in the bcl-2 gene and superoxide dismutase (SOD) levels, which contribute to its therapeutic effects against celecoxib-induced cardiotoxicity. CONCLUSION: Long-term celecoxib administration caused cardiotoxicity in male albino rats with protective effect of royal jelly being given together. It could be concluded that royal jelly may prove a useful adjunct in patients being prescribed celecoxib. TRIAL REGISTRATION: Not applicable.


Assuntos
Cardiotoxicidade , Ácidos Graxos , Coração , Humanos , Ratos , Masculino , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/tratamento farmacológico , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Proteína X Associada a bcl-2/farmacologia , Proteína X Associada a bcl-2/uso terapêutico , Antioxidantes/uso terapêutico , Estresse Oxidativo
11.
Nat Commun ; 15(1): 2536, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514629

RESUMO

Anthracyclines can cause cancer therapy-related cardiac dysfunction (CTRCD) that adversely affects prognosis. Despite guideline recommendations, only half of the patients undergo surveillance echocardiograms. An AI model detecting reduced left ventricular ejection fraction from 12-lead electrocardiograms (ECG) (AI-EF model) suggests ECG features reflect left ventricular pathophysiology. We hypothesized that AI could predict CTRCD from baseline ECG, leveraging the AI-EF model's insights, and developed the AI-CTRCD model using transfer learning on the AI-EF model. In 1011 anthracycline-treated patients, 8.7% experienced CTRCD. High AI-CTRCD scores indicated elevated CTRCD risk (hazard ratio (HR), 2.66; 95% CI 1.73-4.10; log-rank p < 0.001). This remained consistent after adjusting for risk factors (adjusted HR, 2.57; 95% CI 1.62-4.10; p < 0.001). AI-CTRCD score enhanced prediction beyond known factors (time-dependent AUC for 2 years: 0.78 with AI-CTRCD score vs. 0.74 without; p = 0.005). In conclusion, the AI model robustly stratified CTRCD risk from baseline ECG.


Assuntos
Antineoplásicos , Cardiopatias , Disfunção Ventricular Esquerda , Humanos , Antineoplásicos/efeitos adversos , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/etiologia , Volume Sistólico , Inteligência Artificial , Função Ventricular Esquerda , Antibióticos Antineoplásicos/farmacologia , Antraciclinas/efeitos adversos , Eletrocardiografia
12.
JAAPA ; 37(4): 29-33, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531031

RESUMO

ABSTRACT: This article addresses cardiotoxicity in patients with breast cancer who are treated with anthracyclines and/or anti-human epidermal growth factor 2 (HER2) therapy, namely doxorubicin and trastuzumab. Development of concise clinical guidelines for chemotherapy-induced heart failure is ongoing. Through identification of specific risk factors and clinical predictors of cardiotoxicity, clinicians are able to better understand and define effective monitoring strategies and optimize patient care. Close cardiac monitoring is recommended for patients throughout treatment with anthracyclines and anti-HER2 therapy. Pretreatment risk assessment with echocardiography and evaluation of cardiovascular risk factors aid in predicting the development of left ventricular (LV) dysfunction. Further clinical trials are needed to increase understanding and optimize treatment guidelines for LV dysfunction in patients taking anthracyclines or anti-HER2 therapy.


Assuntos
Neoplasias da Mama , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Feminino , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Disfunção Ventricular Esquerda/induzido quimicamente , Antraciclinas/efeitos adversos
14.
Drug Dev Res ; 85(2): e22171, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459752

RESUMO

5-Fluorouracil (5-FU), which is one of the most widely used chemotherapy drugs, has various side effects on the heart. Thymoquinone (TMQ), the main bioactive component of Nigella sativa, has antioxidant and protective effects against toxicity. In this study, we investigated the protective effect of thymoquinone against cardiotoxicity caused by 5-FU in vitro and in vivo models. H9C2 cells were exposed to 5-FU and TMQ, and cell viability was evaluated in their presence. Also, 25 male Wistar rats were divided into five control groups, 5-FU, 2.5, and 5 mg TMQ in nanoemulsion form (NTMQ) + 5-FU and 5 mg NTMQ. Cardiotoxicity was assessed through electrocardiography, cardiac enzymes, oxidative stress markers, and histopathology. 5-FU induced cytotoxicity in H9c2 cells, which improved dose-dependently with NTMQ cotreatment. 5-FU caused body weight loss, ECG changes (increased ST segment, prolonged QRS, and QTc), increased cardiac enzymes (aspartate aminotransferase [AST], creatine kinase-myocardial band [CK-MB], and lactate dehydrogenase [LDH]), oxidative stress (increased malondialdehyde, myeloperoxidase, nitric acid; decreased glutathione peroxidase enzyme activity), and histological damage such as necrosis, hyperemia, and tissue hyalinization in rats. NTMQ ameliorated these 5-FU-induced effects. Higher NTMQ dose showed greater protective effects. Thus, the results of our study indicate that NTMQ protects against 5-FU cardiotoxicity likely through antioxidant mechanisms. TMQ warrants further research as an adjuvant to alleviate 5-FU chemotherapy side effects.


Assuntos
Antioxidantes , Benzoquinonas , Cardiotoxicidade , Ratos , Masculino , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Fluoruracila/toxicidade , Estresse Oxidativo
15.
Yakugaku Zasshi ; 144(3): 251-255, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432933

RESUMO

Cardiotoxicity induced by anti-cancer drugs is a significant concern for patients undergoing cancer treatment. Some anti-cancer drugs can damage cardiac muscle cells directly or indirectly, potentially leading to severe heart failure. Various risk factors, including the type and dosage of chemotherapy agents as well as patient background, contribute to the development of cardiotoxicity. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which enable patient-specific toxicity prediction, hold great promise in this regard. However, the practical implementation of hiPSC-CMs-based prediction of anti-cancer drug-induced cardiotoxicity still faces hurdles. One major challenge involves establishing and optimizing experimental systems for evaluating contractile dysfunction, the ultimate output of heart failure, using hiPSC-CMs. Such efforts are currently underway globally, focusing on tailoring functional evaluation systems to the characteristics of hiPSC-CMs. In this paper, we provide an overview of the contraction mechanisms of cardiac cells and introduce a method of measuring contraction that we have developed, and discuss the current status of contractile function evaluation methods using hiPSC-CMs.


Assuntos
Antineoplásicos , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Cardiotoxicidade/etiologia
16.
Nihon Yakurigaku Zasshi ; 159(2): 83-89, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432924

RESUMO

Cardiotoxicity is a serious adverse effect of anti-cancer drugs. Anti-cancer drug-induced cardiotoxicity are arrhythmia, cardiac contractile dysfunction, coronary artery disease, and hypertension, which affect to the quality of life in patients with cancer. In particular, cardiac contractile dysfunction is a life-threatening symptom leading to heart failure, suggesting that it is very important to predict the risk of developing the contractile dysfunction by anti-cancer drugs. Recently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can be used to assess the risk of drug-induced arrhythmias. This prompts us to evaluate other cardiotoxic effects such as contractility dysfunction and structural toxicity with hiPSC-CMs. Since anti-cancer drug-induced contractility dysfunction are considered to be induced by chronic exposure, we have developed a method to assess chronic contractility dysfunction by imaging analysis of hiPSC-CMs. BMS-986094, which failed in clinical trials due to the occurrence of heart failure, was used as a positive compound. We found that chronic exposure to BMS-986094 decreased the contraction and relaxation velocity in hiPSC-CMs. Doxorubicin was observed to decrease cytotoxicity and both contraction and relaxation velocities in hiPSC-CMs. We are currently further evaluating other anti-cancer drugs with different mode-of-actions using hiPSC-CMs and assess the predictivity and utility of contractile assessment using hiPSC-CMs by comparing with real-world data. Here, we introduce our novel method to assess the chronic contractility of hiPSC-CMs by imaging analysis and discuss the future perspectives for assessing the anti-cancer drug-induced cardiotoxicity.


Assuntos
Antineoplásicos , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiotoxicidade/etiologia , Qualidade de Vida , Antineoplásicos/efeitos adversos , Insuficiência Cardíaca/induzido quimicamente , Medição de Risco
17.
Yakugaku Zasshi ; 144(3): 257-264, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432934

RESUMO

Cancer therapies have evolved considerably thereby substantially improving the survival of patients with cancer. However, cardiotoxicity, such as myocarditis and heart failure, induced by anticancer drugs, including immune checkpoint inhibitor(ICI)s and doxorubicin, present serious challenges. Numerous observations have indicated increased risks of cardiotoxicity- and cancer-related mortality in patients with drug-induced cardiotoxicity. Therefore, the prevention and management of drug-induced cardiotoxicity should be prioritized to enable sustainable long-term treatment while preserving patients' quality of life. Recently, medical research has been primarily focused on elucidation of therapeutic benefits and adverse events using medical big data, including worldwide databases of adverse events. The aim of the present study was to establish prevention strategies for drug-induced cardiotoxicity and advance data analytics. A data-driven approach was adopted to comprehensively analyze patient data and drug-induced cardiotoxicity. These data analytics revealed numerous risk factors, leading to the development of drugs that mitigate these factors. Furthermore, many unknown adverse events with molecularly targeted drugs were brought to light. Consequently, the importance of managing adverse events, guided by insights from data science, is predicted to increase. In this symposium review, we introduce our research exemplifying pharmaceutical studies utilizing medical big data. In particular, we discuss in detail the risk factors associated with myocarditis induced by immune checkpoint inhibitors along with prophylactic agents to mitigate doxorubicin-induced cardiotoxicity.


Assuntos
Miocardite , Neoplasias , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Qualidade de Vida , Doxorrubicina/efeitos adversos
18.
Yakugaku Zasshi ; 144(3): 265-271, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432935

RESUMO

Recent advances in cancer therapy have significantly improved the survival rate of patients with cancer. In contrast, anti-cancer drug-induced adverse effects, especially cardiotoxicity, have come to affect patients' prognosis and quality of life. Therefore, there is a growing need to understand the anti-cancer drug-induced cardiotoxicity. Human induced pluripotent stem (iPS) cell-derived cardiomyocytes (hiPSC-CMs) have been used to assess drug-induced cardiotoxicity by improving the predictability of clinical cardiotoxicity and the principles of the 3Rs (replacement, reduction and refinement). To predict the anti-cancer drug-induced cardiotoxicity, we developed a novel method to assess drug-induced proarrhythmia risk using hiPSC-CMs by participating in the international validation. In addition, we established the chronic contractility toxicity assessment by image-based motion analysis. The compound BMS-986094, which was withdrawn from clinical trials, inhibited contractility velocity and relaxation velocity in hiPSC-CMs. Currently, we are trying to investigate the predictability of the contractility assay by comparing the hiPSC-CM data with adverse events reports from real-world database. In this review, we would like to introduce the novel imaging-based contractility method using hiPSC-CMs and future perspectives in anti-cancer drug-induced cardiotoxicity.


Assuntos
Antineoplásicos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiotoxicidade/etiologia , Miócitos Cardíacos , Qualidade de Vida , Antineoplásicos/toxicidade
19.
Biochem Pharmacol ; 223: 116142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499110

RESUMO

BACKGROUND: The therapeutic value and long-term application of doxorubicin (DOX) were hampered by its severe irreversible cardiotoxicity. Phospholipase C epsilon 1 (PLCE 1) was reported as a new member of the phospholipase C (PLC) family which controls the level of phosphoinositides in cells. Pyroptosis is a newly discovered inflammatory type of regulated cell death. Recent studies have consolidated that chemotherapeutic drugs lead to pyroptosis. Additionally, the phosphoinositide signaling system has remarkable effects on the execution of cell death. We aim to investigate the role of PLCE1 and the mechanism of pyroptosis from the context of DOX-induced cardiotoxicity. METHODS: In the current study, in vitro and in vivo experiments were performed to dissect the underlying mechanism of cardiomyocyte pyroptosis during DOX-induced cardiac injury. The molecular mechanism of PLCE1 was identified by the human cardiomyocyte AC16 cell line and C57BL/6 mouse model. RESULTS: The results here indicated that PLCE1 high expressed and pyroptotic cell death presented in cardiomyocytes after DOX application, which was negatively correlated to heart function. DOX-induced cell model disclosed pyroptosis mediated by Gasdermin E (GSDME) protein and involved in mitochondrial damage. Conversely, the deletion of PLCE1 ameliorated mitochondrial dysfunction by suppressing ROS accumulation and reversing mitochondrial membrane potential, and then increased cell viability effectively. More importantly, the in vivo experiment demonstrated that inhibition of PLCE1 reduced pyroptotic cell death and improved heart effect. CONCLUSIONS: We discovered firstly that PLCE1 inhibition protected cardiomyocytes from DOX-induced pyroptotic injury and promoted cardiac function. This information offers a theoretical basis for promising therapy.


Assuntos
Doenças Mitocondriais , Fosfoinositídeo Fosfolipase C , Piroptose , Camundongos , Animais , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Camundongos Endogâmicos C57BL , Doxorrubicina/farmacologia , Doenças Mitocondriais/metabolismo , Miócitos Cardíacos , Estresse Oxidativo
20.
Curr Probl Cardiol ; 49(5): 102526, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492616

RESUMO

Breast cancer is one of the most common types of cancer, representing 15 % of all new cancer cases in the United States. Approximately 12.4 % of all women will be diagnosed with breast cancer during their lifetime. In the past decades, a decrease in cancer-related mortality is evident as a result of early screening and improved therapeutic options. Nonetheless, breast cancer survivors face long-term treatment side effects, with cardiotoxicity being the most significant one, which lead to increased morbidity and mortality. Breast cancer patients are particularly susceptible to cancer therapeutics-related cardiac dysfunction (CTRCD) as treatment regimens include cardiotoxic drugs, primarily anthracyclines and anti-human epidermal growth factor receptor 2 (anti-HER2) agents (recombinant humanized monoclonal antibodies directed against HER2 such as trastuzumab and pertuzumab). Cardiotoxicity is the most common dose-limiting toxicity associated with trastuzumab. Discontinuation of trastuzumab however, can lead to worse cancer outcomes. There have been case reports, registry-based, retrospective cohort-based and mechanistic studies suggesting the cardioprotective potential of SGLT2i in CTRCD. It is not known whether SGLT2i can prevent the development of incident HF or reduce the risk of HF in patients receiving trastuzumab with or without other concurrent anti-HER2 agent or sequential anthracycline for treatment of HER2 positive breast cancer. Based on these, there is now a call for randomized controlled trials to be performed in this patient cohort to advise guideline-directed therapy for CTRCD, which will in turn also provide detailed safety information and improve cancer and cardiovascular outcomes.


Assuntos
Neoplasias da Mama , Cardiopatias , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Estudos Retrospectivos , Trastuzumab/efeitos adversos , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Antraciclinas/efeitos adversos , Glucose , Sódio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...